Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis.

نویسندگان

  • Francisca A Luesken
  • Ming L Wu
  • Huub J M Op den Camp
  • Jan T Keltjens
  • Henk Stunnenberg
  • Kees-Jan Francoijs
  • Marc Strous
  • Mike S M Jetten
چکیده

'Candidatus Methylomirabilis oxyfera' is a denitrifying methanotroph that performs nitrite-dependent anaerobic methane oxidation through a newly discovered intra-aerobic pathway. In this study, we investigated the response of a M. oxyfera enrichment culture to oxygen. Addition of either 2% or 8% oxygen resulted in an instant decrease of methane and nitrite conversion rates. Oxygen exposure also led to a deviation in the nitrite to methane oxidation stoichiometry. Oxygen-uptake and inhibition studies with cell-free extracts displayed a change from cytochrome c to quinol as electron donor after exposure to oxygen. The change in global gene expression was monitored by deep sequencing of cDNA using Illumina technology. After 24 h of oxygen exposure, transcription levels of 1109 (out of 2303) genes changed significantly when compared with the anoxic period. Most of the genes encoding enzymes of the methane oxidation pathway were constitutively expressed. Genes from the denitrification pathway, with exception of one of the putative nitric oxide reductases, norZ2, were severely downregulated. The majority of known genes involved in the vital cellular functions, such as nucleic acid and protein biosynthesis and cell division processes, were downregulated. The alkyl hydroperoxide reductase, ahpC, and genes involved in the synthesis/repair of the iron-sulfur clusters were among the few upregulated genes. Further, transcription of the pmoCAB genes of aerobic methanotrophs present in the non-M. oxyfera community were triggered by the presence of oxygen. Our results show that oxygen-exposed cells of M. oxyfera were under oxidative stress and that in spite of its oxygenic capacity, exposure to microoxic conditions has an overall detrimental effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”.

“Candidatus Methylomirabilis oxyfera” is a newly discovered anaerobic methanotroph that, surprisingly, oxidizes methane through an aerobic methane oxidation pathway. The second step in this aerobic pathway is the oxidation of methanol. In Gramnegative bacteria, the reaction is catalyzed by pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH). The genome of “Ca. Methylomirabilis...

متن کامل

Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera".

Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate int...

متن کامل

Anaerobic oxidation of methane: an “active” microbial process

The anaerobic oxidation of methane (AOM) is an important sink of methane that plays a significant role in global warming. AOM was first found to be coupled with sulfate reduction and mediated by anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). ANME, often forming consortia with SRB, are phylogenetically related to methanogenic archaea. ANME-1 is even able to produce ...

متن کامل

Ultrastructure of the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera," a novel polygon-shaped bacterium.

"Candidatus Methylomirabilis oxyfera" is a newly discovered denitrifying methanotroph that is unrelated to previously known methanotrophs. This bacterium is a member of the NC10 phylum and couples methane oxidation to denitrification through a newly discovered intra-aerobic pathway. In the present study, we report the first ultrastructural study of "Ca. Methylomirabilis oxyfera" using scanning ...

متن کامل

Bacterial oxygen production in the dark

Nitric oxide (NO) and nitrous oxide (N(2)O) are among nature's most powerful electron acceptors. In recent years it became clear that microorganisms can take advantage of the oxidizing power of these compounds to degrade aliphatic and aromatic hydrocarbons. For two unrelated bacterial species, the "NC10" phylum bacterium "Candidatus Methylomirabilis oxyfera" and the γ-proteobacterial strain HdN...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental microbiology

دوره 14 4  شماره 

صفحات  -

تاریخ انتشار 2012